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Abstract
This study aims to investigate the time-dependent squeezing of nanofluid flow, comprising carbon
nanotubes of dual nature, e.g. single-walled carbon nanotubes, and multi-walled carbon nanotubes,
between two parallel disks. Numerical simulations of the proposed novel model are conducted,
accompanied by Cattaneo-Christov heat flux in a Darcy-Forchheimer permeable media. Additional
impacts of homogeneous–heterogeneous reactions are also noted, including melting heat. A relevant
transformation procedure is implemented for the transition of partial differential equations to the
ordinary variety. A computer software-based MATLAB function, bvp4c, is implemented to handle
the envisioned mathematical model. Sketches portraying impacts on radial velocity, temperature, and
concentration of the included parameters are given, and deliberated upon. Skin friction coefficient
and local Nusselt number are evaluated via graphical illustrations. It is observed that the local inertia
coefficient has an opposite impact on radial velocity and temperature field. It is further perceived that
melting and radiation parameters demonstrate a retarding effect on temperature profile.

Keywords: melting heat transfer, Darcy-Forchheimer porous media, Cattaneo-Christov heat flux,
carbon nanotubes, squeezing flow, homogeneous–heterogeneous reactions

(Some figures may appear in colour only in the online journal)

Nomenclature

Acronyms Description

MWCNTs Multi-walled carbon nanotubes

MHD Magnetohydrodynamics

SWCNTs Single-walled carbon nanotubes

Symbols Description

( )b t Strength of magnetic field

c Dimensional constant

Cp Capacity of specific heat

cs Heat capacity of solid surface
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( )Cp nf Specific heat capacity of nanofluid

D D,m n Diffusion coefficients

( )Cp f Specific heat capacity of fluid

F* Forchheimer parameter

Ha Hartmann number

kc Thermal conductivity of carbon nanotubes

K* Permeability of spongy media

k1 Homogeneous reaction parameter

k2 Heterogeneous reaction parameter

L Latent heat

m n K K, , ,i j Concentrations of chemical species

F Local inertia coefficient

k Thermal conductivity

m n,* * Chemical species

Me Melting heat coefficient

P Pressure

qrd
Radiative heat flux

Pr Prandtl number

Rd Thermal radiation coefficient

ReL Local squeezed Reynolds number

Re Reynolds parameter

Sc Schmidt parameter

Sq Squeeze parameter

T Temperature

T0 Temperature of solid

TH Temperature at upper disk

TM Surface temperature

( )U W,* * Components of velocities

K Kelvin

W Watt

Greek symbols Description

c Similarity transformation variable

( )q c Dimensionless temperature

( )c¢f Radial velocity (dimensionless velocity)

kc Carbon nanotubes thermal conductivity

mf
fluid dynamic viscosity

knf Thermal conductivity of nanofluid

r Density

rnf
Nanofluid density

snf Nanofluid electrical conductivity

nf Kinematic viscosity of the fluid

s* Stefan Boltzmann constant

g Thermal relaxation coefficient

qw Temperature ratio parameter

rc
Density of carbon nanotubes

( )cf Axial velocity (dimensionless velocity)

( ) ( )c cH G, Dimensionless concentrations

kf Base fluid (water) thermal conductivity

m dynamic viscosity

mnf
Nanofluid dynamic viscosity

rf
Density of fluid

nnf Nanofluid kinematic viscosity

f Volume fraction of nanoparticles

n Kinematic viscosity

k* Mean absorption coefficient

l Porosity parameter

Subscripts Description

0 For solid

1 For homogeneous

2 For heterogeneous

c Carbon nanotubes

f Fluid

H For upper disk

L For local

M For lower disk

nf Nanofluid

p Constant pressure

rd Radiative

s Solid surface

Introduction

A carbon nanotube is a large, stretched, thin, and tube-shaped
molecule of pure carbon of around 1 to 3 nanometers (1 to 3
billionth of a meter) in breadth (diameter), and 100 to 1000 s
of nanometers in length. Iijima [1] introduced the theory of
carbon nanotubes at the end of the 20th century, when he
discovered some potential applications of CNTs for solar
cells, radar-absorbing coating, gas storage, composites,
semiconductor devices, ultra-capacitors, etc [2]. CNTs are
classified as SWCNTs and MWCNTs. A SWCNT has a
regular straw shape with only one layer. A MWCNT is a set
of nested SWCNTs of increasing diameters. Din and Khan [3]
studied the squeezing flow of Casson fluid with non-linear
thermal radiation between parallel disks. Haq et al [4]
examined MHD nanofluid squeezed flow based on water with
CNTs between 2-parallel disks, and concluded that temper-
ature and velocity profiles increase with high nanoparticle
volume fraction. Melting heat in the radiative flow of CNTs
with homogeneous–heterogeneous reactions was scrutinized

2

Commun. Theor. Phys. 72 (2020) 085801 M Ramzan et al



by Hayat et al [5]. They found that the Nusselt number
increases for large values of nanoparticle volume fraction.

Recently, squeezed flow between two parallel disks has
garnered a great deal of attention, with its vast number of
potential applications in technological and industrial systems.
Many devices such as stirring pistons in engines, hydraulic
brakes, and chocolate filler are based on the flow principle
between squeezing regions. Stefan [6] proposed the idea of
squeezing flow in 1874. Since then, many researchers have
explored the problems associated with squeezing flow. The
theoretical investigation regarding squeezing flow between
parallel disks is presented by Leider and Bird [7]. Qayyum
et al [8] discussed time-dependent squeezing Jeffery fluid
flow between two parallel disks. Hayat et al [9] discussed
squeezed nanofluid flow-based CNTs, and the impact of
thermal radiations on Darcy-Forchheimer spongy media.
They posited that an augmentation in nanoparticle volume
fraction causes a reduction in both the velocity and the
temperature of the fluid. Hashmi et al [10] investigated the
analytical simulations for squeezing nanofluid flow amidst
parallel disks. It should be noted that these studies are discuss
the use of two parallel disks, but do not refer to Cattaneo-
Christov heat flux.

The Fourier law of heat conduction has been a criterion
benchmark in many practical industries for estimating the
behavior of heat transmission. Nevertheless, because of the
parabolic-heat equation due to an initial disorder, this system
suffers a great deal. Cattaneo [11] tackled this drawback of
the Fourier model via the addition of thermal time relaxation.
This modification has created a hyperbolic heat equation for
the temperature field. Also, within finite speeds, heat trans-
mission is permitted to circulate through thermal waves.
Tibullo and Zampoli [12] have worked on innumerable
practicable applications i.e. to nanofluid flow, applying the
Cattaneo-Christov heat conduction model. Christov [13]
posited a modification of the Maxwell-Cattaneo model, which
is known as the Cattaneo-Christov thermal flux model.
Radiative nanofluid flow with the Cattaneo-Christov heat flux
model between parallel disks is studied by Dogonchi et al
[14]. Lu et al [15] discussed the mathematical model of
unsteady fluid flow containing SWCNTs and MWCNTs
under conditions of Cattaneo-Christov heat flux, and homo-
geneous–heterogeneous reactions between two parallel disks,
and determined that temperature rises with an increasing
thermal relaxation parameter. Zubair et al [16] discussed the
3D Darcy-Forchheimer squeezing nanofluid flow with Cat-
taneo-Christov heat flux, using four distinct types of nano-
particles, via the analysis of entropy generation.

Henry Darcy [17] determined the fluid flow over a
permeable surface, based on the outcomes of water flow
experiments over cribs of sand, and hydro-geology. He
defined his idea of fluid flow over a spongy media in 1856.
Due to its limitations of small velocity with weaker perme-
ability, Philipps Forchheimer [18] modified the momentum
equation by velocity square v2 within Darcian velocity. This
became known as the Forchheimer term, as designated by
Muskat [19]. Nasir et al [20] scrutinized the radiative 3D

Darcy-Forchheimer flow of carbon nanotubes past a stretch-
able rotating disk. They posited that fluid velocity falls with
an upsurge in inertia and porosity parameters. Jha and
Kaurangini [21] presented analytic solutions for Darcy-For-
chheimer-based spongy media relations. Kaladhar [22] dis-
cussed mixed convection flow with dual stratification effects
within a Darcy-Forchheimer medium, finding that velocity is
reduced for higher estimates of Darcy-Forchheimer number.
A numerical solution for a second law analysis of ferrofluid
within a spongy semi annulus is investigated by Sheikho-
leslami et al [23]. Alamri et al [24] proposed the model of a
radiative plane Poiseuille flow of nanofluid, using slip con-
ditions past a porous medium. Some recent investigations
discussing porous media are referenced in [25–28], among
many others.

Based on the above discussion, it can be noted that there
is as yet no study in which the influences of Cattaneo-
Christov heat flux with carbon nanotubes in a Darcy-For-
chheimer porous media are examined between two parallel
disks. Comparatively little research has been conducted in the
area of carbon nanotubes to date. For this reason, this paper
aims to examine melting heat transfer effects in carbon
nanotubes- (SWCNTs and MWCNTs) based nanofluid
unsteady flow, in a non-linear Darcy-Forchheimer permeable
media, between two parallel disks, with Cattaneo-Christov
heat flux and homogeneous–heterogeneous reactions. The
impact of prominent parameters on surface drag force, and
Nusselt number, are portrayed via graphic illustrations. The
numerical solution of the present work is obtained by
adopting the Finite difference method, this being the default
in the bvp4c built-in function of the MATLAB scheme. The
layout of this paper consists of: Section one – introduction.
Section two is devoted to mathematical modeling, with all
required equations, having employed the boundary layer
theory to partial differential equations. Section three is a
detailed elaboration of the numerical methods applied to the
problem. Section four covers results and discussion. The
paper concludes with Final remarks and summing up.

Mathematical modeling

Consider an incompressible, time-dependent 2D MHD
nanofluid flow, containing CNTs within a Darcy-Forchheimer
spongy media under conditions of non-linear thermal radia-
tion and melting heat transfer, between two infinite parallel
disks of length

( ) ( )= = -Z x t h ct1 , 1

with applied magnetic strength ( ) =
-

b t b

ct1
0 which is normal

to the disks (figure 1). Here, SWCNTs and MWCNTs, along
with water (base fluid), are considered. Moreover, the upper
disk ( )=Z x t moves up and down with a velocity ( )Zd

dt
from

the fixed and porous lower disk =Z 0. The induced magnetic
field is neglected here, because we are using a small Reynolds
number. We also consider the cylindrical coordinate system
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( )aR Z, , . The velocity componentV vanishes identically due

to rotational flow symmetry ( )=
a
¶
¶

0 .

We assume a model, designed by Chaudhary and Merkin
[29] for homogeneous–heterogeneous chemical reactions
defined as:

( )+ m n n K mn2 3 , rate , 2i
2* * *

( )m n K m, rate . 3j* *

These reactions are presumed to be isothermal. The
governing system with boundary layer equations are repre-
sented as:
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With boundary conditions
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Figure 1. Fluid geometry.
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Mathematically, thermophysical properties are shown as:
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The thermophysical features of water and CNTs are
appended in table 1.

From equation (7), by utilizing the Roseland thermal
radiation approximation [31], we obtain the value of qrd as:
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Similarity transformation

Similarity transformations are defined as:
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By means of the above transformation, equation (4) is
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Based on equations (2) and (3), chemical species m* and
n* cannot be analogous, but both can be identical in magni-
tude, provided d = 1. Thus, from equation (20), presuming
that Dn and Dm are identical (i.e., d = 1), we obtain
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using the above property, equations (18) and (19) become
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and the boundary Equations (10) and (11) become
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Based on equation (23), Me is the melting heat coefficient
as:

⎡
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which is the amalgamation of two numbers, ( )/-c T T Lf H M ,
and ( )/-c T T Ls M 0 , known as Stefan numbers, for solid and
liquid states. In the above equations, non-dimensional coef-
ficients are defined as:

Table 1. Thermophysical characteristics of base fluid, SWCNTs and
MWCNTs [30].

Thermophysical traits

⎛
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W

mK

Water (base fluid) 4179.00 997.100 0.613 00
Nanoparticles (SWCNTs) 425 2600 6600
Nanoparticles (MWCNTs) 796 1600 3000
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Surface drag force and rate of heat flux are classified by:
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Solution methodology

For non-linear systems of ODEs (16), (17), and (22), with
boundary conditions (23) and (24), we employ the finite differ-
ence default method of the bvp4c built-in function of the
MATLAB scheme, which is fourth order accurate, and a grid size
of 0.01 is taken with the tolerance -10 .7 Using the following
numerical code, we obtain first order ODEs as:
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Results and discussion

This segment examines the outcomes of dimensionless velocity
( )c¢f , temperature ( )q c , and concentration fields ( )cH for

numerous arising parameters, so as to reflect the behavior of
fluid flow, and heat and mass transport. The subsequent dis-
cussion is presented for both SWCNTs and MWCNTs. Para-
meters used in this analysis are l= = =Pr Re6.2, 0.4, 0.2,

g= = = = = = =Ha M Sq Sc k k0.5, 0.01, 0.5, 1.0,e 1 2

f q= = = =F R0.7, 0.1, 0.9, 1.1.d w Figure 2(a) illustrates
how positive and negative values of squeezed number Sq affect
velocity ( )c¢f . The graph illustrates how, for both single and
multi-walled CNTs, velocity profile ( )c¢f increases with the
contraction of disks, i.e., negative values, whereas for positive
values where upper and lower plates are driven further apart, the
opposite behavior can be observed. In the case of contraction
( )= - - -S 1, 2, 3... ,q the fluid is exposed to a squeezed force,
which causes it to move with increased velocity. Hence, velocity
is augmented. Nevertheless, for =S 1, 2, 3...q when both disks
move away from each other, a gap is produced between the
disks. The fluid moves in a reverse direction to fill this gap; thus,
velocity reduces. In figure 2(b) effect of the Sq squeezing
parameter is exhibited versus ( )q c . In the case of the contraction
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of disks ( )= - - -S 1, 2, 3... ,q the temperature profile ( )q c
establishes diminishing behavior, whereas an opposite trend is
seen when the disks are driven apart from each other i.e.

=S 1, 2, 3....q This is because movement of fluid increases
when disks are driving away from each other, thus the temp-
erature increases. An inverse impact of the melting heat transfer
parameter Me can be observed in figures 3(a) and (b), for
velocity ( )c¢f and temperature ( )q c profiles, respectively. As
the molecular motion enhances due to melting heat transit,
owing to the fact that Me leads to increased molecular motion
from hot fluid toward cold surface, which in turn causes an
increase in velocity. In contrast, with the temperature field,
convective flow causes heat transfer to the melting surface more
promptly, which results in decreasing temperature ( )q c .
Figures 4(a) and (b) depict the effect of the local inertia coeffi-
cient F on velocity ( )c¢f and temperature ( )q c of fluid flow. It
can be observed that local inertia coefficient F has an inverse
influence on both fields. Here, velocity falls whereas temperature
increases. As porous media cause resistance in a fluid flow, the

result is a reduction in dimensionless velocity ( )c¢f . Figure 5
illustrates the behavior of the temperature ratio parameter qw on
fluid temperature. A retarding effect of qw on dimensionless
temperature can be observed. The effects of porosity parameterl
on radial velocity are shown in figure 6, where velocity falls for
higher values of l. The porosity of spongy media causes high
resistivity to fluid flow; hence, velocity declines. Figures 7(a)
and (b) show the impact of the nanoparticle volume fraction
parameter f on the radial velocity ( )c¢f , and temperature ( )q c
of the fluid. An increase in the quantity of nanoparticles in the
base fluid (water) leads to a thickening of the fluid. Due to this,
velocity reduces (figure 7(a)). On the other hand, in figure 7(b),
for ordinary fluid (i.e., f = 0, in the absence of volume pro-
portion) the temperature field is highest when the disks are
driven further from each other (i.e., =Sq 1, 2, 3...), while
augmentation of volume fraction f causes a reduction in the
temperature of the fluid. This is because the thermal conductivity
of nanofluid increases by using a small concentration of nano-
particles, and when we increase the volume of nanoparticles,

Figure 2. (a). Variations of squeezing parameter Sq on radial velocity
( )c¢f . (b). Variations of squeezing parameter Sq on temperature

distribution ( )q c .

Figure 3. (a). Variations of melting parameter Me on radial velocity
( )c¢f . (b). Variations of melting parameter Me on temperature

distribution ( )q c .
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Figure 4. (a). Variations of local inertia coefficient F on radial
velocity ( )c¢f . (b). Variations of local inertia coefficient F on
temperature distribution ( )q c .

Figure 5. Variations of temperature ratio parameter qw on
temperature distribution ( )q c .

Figure 6.Variations of porosity parameterl on radial velocity ( )c¢f .

Figure 7. (a). Variations of nanoparticle volume fraction f on radial
velocity ( )c¢f . (b). Variations of nanoparticle volume fraction f on
temperature distribution ( )q c .
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the thermal conductivity of the nanofluid decreases; hence, the
temperature decreases. Figure 8 demonstrates the effects of the
radiation parameter Rd on the temperature ( )q c . The temper-
ature drops for larger values of R .d The transfer of energy to the
fluid declines owing to higher estimates of R ,d thus decreasing
the fluid temperature. In figure 9, the impact of the thermal
relaxation time coefficient g is shown. Higher values of g cause
an increment in dimensionless temperature ( )q c for both types
of CNTs. Figure 10 indicates that concentration ( )cH decreases
for higher values of k .1 The same outcome can be detected in
figure 11 for k .2 It is therefore deduced that concentration
eventually reduces as the reactants are used throughout homo-
geneous–heterogeneous reactions. The effects of Schmidt num-
ber Sc are portrayed in figure 12. The concentration profile is
reduced for increasing values of Sc. As Sc is the ratio of
momentum to mass diffusivity, greater Sc estimates indicate
lower mass diffusivity, which causes a reduction in fluid con-
centration ( )cH . In figure 13, a retardation effect of porosity

Figure 8. Variations of radiation coefficient Rd on temperature
distribution ( )q c .

Figure 9. Variations of thermal relaxation parameter g on temperature
distribution ( )q c .

Figure 11. Variations of heterogeneous reaction coefficient k2 on
concentration distribution ( )cH .

Figure 12. Variations of Schmidt number Sc on concentration
distribution ( )cH .

Figure 10. Variations of homogeneous reaction Coefficient k1 on
concentration distribution ( )cH .
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parameter l on local inertia coefficient F can be observed for
surface drag force. Influences of melting parameter Me and
squeezing parameter Sq on the rate of heat transfer are depicted

in figure 14. Here, it can be observed that augmentation in the
melting coefficient Me causes an increment in the rate of heat
transfer. Since molecular motion increases with high melting
heat transmission, hence the rate of heat is increased when we
augment the melting parameter. Figure 15 illustrates the impact
of radiation coefficient Rd and temperature ratio coefficient qw

on the Nusselt number. The rate of heat transfer falls for larger
estimates of R .d This is because the energy from radiation
phenomena is being used in the melting .process; thus, a sig-
nificant decay in the Nusselt number can be seen.

Table 2 depicts the comparative estimates of surface drag
force for various values of squeezing parameter and Hart-
mann number, with Lu et al [15] as limiting case. A
remarkable resemblance is achieved in this regard.

Concluding remarks

In the presented model, 2D time-dependent magnetohydro-
dynamic squeezing nanofluid flow between two parallel disks
with suspended carbon nanotubes is discussed. The analysis is
performed under conditions of non-linear thermal radiation,
amalgamated with melting heat, and homogeneous–hetero-
geneous reactions. Cattaneo-Christov heat flux is engaged in
place of the conventional Fourier law of heat conduction. The
proposed model is transformed into a non-linear form and
processed by means of the default Finite difference method of
the bvp4c built-in function of the MATLAB scheme. The key
findings of the presented model are:

• The local inertia coefficient has an opposite impact on the
radial velocity and temperature field.

• Porous media creates resistance in a fluid flow, resulting
in a reduction in fluid velocity and an augmentation in the
temperature of the fluid.

• The melting parameter has a retarding effect on temper-
ature, whereas radial velocity increases.

• An increase in the radiation coefficient leads to a
reduction in the temperature of the fluid.

• Radiative energy is being used in the melting process;
consequently, the temperature of the fluid decreases.

• The porosity coefficient has a retarding influence on
radial velocity and surface drag force.

Figure 13. Variations of porosity parameter l and local inertia
parameter F on surface drag force.

Figure 14. Variations of melting parameter Me and squeezing
parameter Sq on Nusselt number.

Figure 15.Variations of radiation parameter Rd and temperature ratio
parameter qw on Nusselt number.

Table 2. Comparative results of surface drag force for distinct values
of squeezing parameter and Hartmann number with Lu et al [15].

Sq Ha Lu et al [15] Present results

0.5 0.0 −3.146 1941 −3.134 6178
1.0 −3.194 0816 −3.183 3610
2.0 −3.241 3602 −3.236 7145

−1.0 1.0 −2.759 6174 −2.747 1465
0.0 −3.049 6468 −3.031 1268
1.0 −3.338 1297 −3.327 8263
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